Asymptotics for posterior hazards
نویسنده
چکیده
An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.
منابع مشابه
Asymptotics for the infinite time ruin probability of a dependent risk model with a constant interest rate and dominatedly varying-tailed claim sizes
This paper mainly considers a nonstandard risk model with a constant interest rate, where both the claim sizes and the inter-arrival times follow some certain dependence structures. When the claim sizes are dominatedly varying-tailed, asymptotics for the infinite time ruin probability of the above dependent risk model have been given.
متن کاملModern Bayesian Asymptotics
A survey of modern Bayesian asymptotics is given. Specific attention is paid to the Hellinger consistency of posterior distributions and the asymptotic study of Bayes factors.
متن کاملOn posterior distribution of Bayesian wavelet thresholding
We investigate the posterior rate of convergence for wavelet shrinkage using a Bayesian approach in general Besov spaces. Instead of studying the Bayesian estimator related to a particular loss function, we focus on the posterior distribution itself from a nonparametric Bayesian asymptotics point of view and study its rate of convergence. We obtain the same rate as in Abramovich et al. (2004) w...
متن کاملRemarks on consistency of posterior distributions
In recent years, the literature in the area of Bayesian asymptotics has been rapidly growing. It is increasingly important to understand the concept of posterior consistency and validate specific Bayesian methods, in terms of consistency of posterior distributions. In this paper, we build up some conceptual issues in consistency of posterior distributions, and discuss panoramic views of them by...
متن کامل2 The Dirichlet process , related priors and posterior asymptotics
Here we review the role of the Dirichlet process and related prior distribtions in nonparametric Bayesian inference. We discuss construction and various properties of the Dirichlet process. We then review the asymptotic properties of posterior distributions. Starting with the definition of posterior consistency and examples of inconsistency, we discuss general theorems which lead to consistency...
متن کامل